

GH3128

GH3128(GH128)是以钨、钼固溶强化并用硼、铈、锆强化晶界的镍基合金,具有高的塑性、较高的持久蠕变强度以及良好的抗氧化性和冲压、焊接等性能。其综合性能优于 GH3044 和 GH3536 等同类镍基固溶合金。适合于制造 950℃以下长期工作的的航空发动机燃烧室火焰筒、加力燃烧室壳体等高温零部件。

技术标准

GB/T 14992-2005 《高温合金和金属间化合物高温材料的分类和牌号》

GB/T 14995-2010 《高温合金热轧板》 GB/T 14996-2010 《高温合金冷轧板》

GJB 1952A-2008 《航空用高温合金冷轧薄板规范》 GJB 2612-1996 《焊接用高温合金冷拉丝材规范》 GJB 3317A-2008 《航空用高温合金热轧板规范》

辽新 7-0090-2003 《航空用高温合金 GH128 热轧 (或锻制) 棒材技术条件 (Φ≤200mm)》

化学成分,%

	元素	Cr	Ni	W	Мо	Fe	Al	Ti	С	Mn	Si	Р	S
	min.	19.00	4	7.50	7.50		0.40	0.40					
ı	max.	22.00	余	9.00	9.00	2.00	0.80	0.80	0.05	0.50	0.80	0.013	0.013

注:依照 GB/T 14992 标准,部分元素在其它标准规范中可能有所差异。

密度 8.89g/cm³

机械性能

GJB 1952A-2008 《航空用高温合金冷轧板规范》 GJB 3317A-2008 《航空用高温合金热轧板规范》

	拉伸试验						
试样状态	试验	抗拉强度	延伸率	收缩率			
	温度	σ_{b}	δ_5	Ψ			
交货状态(1140~1180℃,空冷)	室温	≥735MPa	≥40%	/			
交货状态+1200±10℃,空冷	950℃	≥175MPa	≥40%	/			